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ABSTRACT

Existing face recognition systems can achieve high recogni-
tion rates in the well-controlled environment. However, when
the resolution of the test images is lower than that of the
gallery images, the performance degrades seriously. Tradi-
tional two-step solutions (first adopting super-resolution (SR)
method, and then performing the recognition phase) main-
ly focus on visual enhancement, rather than classification.
In this paper, we utilize Local Consistency Preserved Cou-
pled Mappings (LCPCM-I) to project the face images with
different resolutions onto a new common space for recogni-
tion based on coupled mappings (CM). To achieve better re-
sults, we incorporate discriminant information with LCPCM
(LCPCM-II). The experimental results on FERET database
verify the effectiveness of our proposed method.

Index Terms— Face recognition, low-resolution, super-
resolution, local consistency preserved couple mapping.

1. INTRODUCTION

A great number of achievements have been made in the area
of automatic face recognition during the last decades, espe-
cially in well-controlled environment. However, it often hap-
pens in practical applications that the resolution of the test
face images is not as high as that of the gallery face images
, which degrades the performance of face recognition system
severely.

Conventional methods solve this problem by first apply-
ing super-resolution (SR) to improve the resolution of input
low-resolution face images followed by the procedure of
recognition. There are many types of SR methods, among
which learning-based SR methods are proved to perform bet-
ter. Freeman et al. [1] learnt a Markov Random Field from
training images to predict target HR image with MAP estima-
tion. Inspired by LLE [2], Chang et al. [3] reconstructed HR
image from its spatial neighbors. Yang et al. [4] proposed a
method based on sparse representation which gets outstand-
ing performance. However, these SR methods themselves

aim at the visual enhancement, rather than at the recognition.
Moreover, they are often complicated and time-consuming.

Recently, some methods have been proposed to avoid ex-
plicit SR for face recognition. Gunturk et al. [5] transferred
SR reconstruction from pixel domain to eigenface-domain.
Hennings-Yeomans et al. [6] [7] proposed a joint object func-
tion that integrates the aims of SR and face recognition si-
multaneously. B. Li [8] performed low-resolution (LR) face
recognition via couple locality preserving mapping (CLPM)
based on coupled mappings (CM). The CLPM brought in a
penalty weighting matrix to preserve the local relationship in
the original feature spaces, whose formulation was like [9]
[10]. Ren et al. [11] developed a couple kernel embedding
method to map face images with different resolutions onto
an infinite-dimensional and nonlinear space instead of linear
projection subspace via kernel method. These methods em-
phasize on the object of recognition rather than just recon-
struction and therefore present a better performance. Howev-
er, most of these algorithms discard the sample labels which
are important for classification.

In this paper, we propose to employ Local Consistency
Preserved Coupled Mapping (LCPCM-I) to project the faces
with different resolutions onto a new common space for low-
resolution face recognition based on CM. Different from [8]
[11], the objective function we proposed considers not only
the local relationship between HR and LR images, but also
that among HR images and that among LR images, which is
called local consistency constraint (LCC). Furthermore, we
draw the sample labels into the penalty weighting matrix to
take into count the discriminant information for classification.
Compared with LCPCM-I, we named LCPCM with classifi-
cation information LCPCM-II.

The remainder of this paper is organized as follows. Sec-
tion II describes the problem formulation of low-resolution
face recognition and coupled mappings. Our proposed meth-
ods are discussed in Section III. Section IV provides experi-
mental results on FERET database. Finally, we conclude this
paper in Section V.



2. LOW-RESOLUTION FACE RECOGNITION
BASED ON CM

In the task of low-resolution face recognition, we expect
for a proper distance measure between a LR image 1; and a
HR image hj, ie., d;; = dist(l;,h;). Here, I; € R™,i =
1,2,...,N,and h; € RM j = 1,2,... N, represent the
m-dimension feature vectors of LR images in the probe set
and M -dimension (m < M) feature vectors of HR images in
the gallery set. Due to the mismatch of dimension between L-
R images and HR images, conventional distance measures can
not be calculated directly. To solve this problem, explicit SR
methods attempt to establish a mapping, fsr : R™ — RM,
to ensure the match of dimension of images with different
resolutions. Then, the distance measure can be calculated as

dij = dist(fsr(l;), hy). (1)

Different from explicit SR methods, CM method is in-
tended to find two mappings, f; : R™ ~ R¢ for LR images
and fg : RM 5 R for HR ones, to obtain the consistency of
dimensionality. Then, the distance measure can be calculated
as

dij = dist(fr (L), fu(hy)). )

Here, we define f1,(1) = P¥1land fy(h) = P%h are lin-
ear mappings, respectively, where Py and Py are two pro-
jection matrices with size of m x d and M x d. To obtain
the two projection matrices, CMs method minimizes the ob-
jective function

Jem(Pr, Prr) Thy|2. 3)

Z [P, —

where N indicates the number of the training images. The
above objective function implies the projection of each LR
image and corresponding HR ones should be as close as pos-
sible in the new common subspace. Next, we denote the o-
riginal LR and HR feature spaces in the training set as L =

[11, 12, ey th] and H = [hl,hg, ey hNJ, Eq (3) can be
reformulated as
Jom(Pr, Py) = u(|PTL — PLH|]?), “)

where tr(-) is the matrix trace operator. Furthermore, let P =

P _|L o | L o .
[PH]’Z_[O H}andA—{O H}.Theobjec—

tive function can be rewritten as
Jou(Pr,Py) = tr(PTZAZTP). 6)

P and Py can be obtained by minimizing Eq. (5). Opti-
mization solution can be acquired referring to [8].
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Fig. 1. Illustration of our methods via LCPCM.
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3. PROPOSED METHODS

3.1. Local Consistency Preserved Coupled Mappings
(LCPCM-])

The above CM method obtains the projection in the principle
that the distance measure of each LR and the corresponding
HR images in the projected common subspace should be as
close as possible. It does not take the local relationship of LR
and HR separately into consideration, specially when there
are several samples with the same labels.

Based on CM, we take one more assumption into consid-
eration that the LR images and HR images can preserve their
own local relationship separately (Illustrated in Fig. 1). Eq.
(3) is developed to the following objective function.

JPL,Py) =
(6)

where

J(Pr,PrL) ZZHPTI—PTI Pwi;, (D)

i=1 j=1

and

—Phhj|Pwi;. )

TPy, Py) = ZZ [P 7

=1 j=1

The above two formulations of Eq. (7) and Eq. (8) are
inspired by the work of [9] [10]. They build a graph incor-
porating local relationship and are designed to minimize the
weighted Euclidean distance. The heat kernel is adopted as
the penalty weighting matrix W = {w;; } [8] as follows:

_ llhi—hy|? : .
wm—:{ o 0" ) e

otherwise

Jer(Pr,Pu) +T.(Pr,Pr) + Tu(Pu,Pw)



where 0 = a )7, ; (|lh; —h;|[*)/N;, and Ny (i) contains the
indices of k nearest neighbors of sample .

Let diagonal matrices E* = {e;;} = Y, wij, EY =
{ejj} = >2; wij and

C,=El'+Ef - W-_WT 41, (10)
Co=E'+EY - W-WT 11, (1)
and
c:[ci Ei] (12)
Eq. (6) is reformulated as
J(PL,Py) =tu(PTZCZ"P). (13)

Therefore we can solve the following optimization problem
by adding the constraints as

argmin 7(Pr,Py) st. PTZZ'P =1

PL.Pn (14)

P7Z1 =0,

where 1 and O are the vectors of ones and zeroes respectively.
Eq. (14) can be solved as a generalized eigen-problem.

Let M = ZAZT and N = ZZ7T, the solution to the
optimization problem Eq. (14) can be obtained by finding the
eigenvectors with respect to the second to (d + 1) (d is the
dimension of the common space) smallest eigenvalues in the
following equation.

Mp = A\Np 5)

where p is the eigenvector with respect to the eigenvalue A.

3.2. LCPCM with Sample Labels (LCPCM-II)

Since class information or sample labels are crucial for clas-
sification [12], we mix them into LCPCM by imposing con-
straints on the penalty weighting matrix as follows:

h;—h,|2 . )
wi :{ exp (_ ol ) J € Ni(D) (16)
7 0 otherwise

where NV (i) contains the indices of k nearest intra-class
(rather than inter-class) neighbors of sample i. Through in-
troducing the sample labels, the objective function pays more
attention to the local consistency preserving of intra-class
samples, and therefore the couple projection matrices are
more discriminative, rather than stress on only the dimen-
sionality reduction.

4. EXPERIMENTAL RESULTS

Our experiments are conducted on the FERET face database.
The training set includes 1002 frontal face images from 429

persons. We use the standard gallery set “fa” (1196 images of
1196 individuals) and the probe set ’fb” (1195 images from
1196 individuals). The 72 x 72 HR face images are cropped
and aligned with the positions of two eyes. The 12 x 12 LR
images are generated by smoothing and down-sampling. To
evaluate the performance of our proposed method, we com-
pare our LCPCM-I and LCPCM-II with CM and CLPM [8]
methods. In our experiments, we set the distribution of each
pixel to mean 0 and variance 1.

Fig. 2 illustrates the effect of parameter o on our methods.
The recognition rates of both our methods vary within 3%,
when « is in a suitable range. Moreover, it is obvious that
the recognition rate of method LCPCM-II is approximately
2% ~ 5% higher than that of method LCPCM-1.
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Fig. 2. Recognition results with different parameter « in heat
kernel.

Fig. 3 shows the recognition results of our methods using
different numbers of the nearest neighbors. It is obvious that
the recognition rate of LCPCM-I drops fast as &k (the number
of nearest neighbors of h;) increases, while that of LCPCM-II
barely varies. Because most classes in the train set of FER-
ET contain only two face images, there is a high chance that
LCPCM-I may involve the wrong neighbor information when
k > 1. Nevertheless, LCPCM-II takes classification into con-
sideration, just containing the neighbors in the same class,
therefore it won’t be affected.

In Fig. 4, we compare our methods with other methods
(CM and CLPM), setting the parameters « a proper value and
k = 1. The recognition rates of LCPCM-I with 85-D features
and LCPCM-II with 70-D features are 91.5% and 94.9%, re-
spectively. But CM with 144-D features and CLPM with 80-
D features only achieve the rates of 77.4% and 89.5%. So
our two methods are both higher than other methods. Fur-
thermore, the recognition rates of our methods vary gently,
i.e., we can obtain a relatively high recognition rate in much
lower dimension for high computation speed.
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Fig. 3. Recognition results with different number of nearest
neighbors.
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Fig. 4. Comparison of recognition results with different meth-
ods.

5. CONCLUSIONS

In this paper, we have proposed novel methods to solve low-
resolution face recognition without SR preprocessing. Our
algorithm projects the face images with different resolution-
s onto a common subspace through optimizing the objective
function. The objective function preserves not only the lo-
cal relationship between HR and LR space based on cou-
pling mappings, but also that of HR and LR space them-
selves. We call the above algorithm LCPCM-I. Furthermore,
we incorporate the classification information with LCPCM-
I by drawing the sample labels into the penalty weighting
matrix. We name it LCPCM-II and it achieves better perfor-
m than LCPCM-I1. Experimental results on FERET show our
methods can achieve pleasant performance.

In future work, employing nonlinear mapping by kernel
methods and using more discriminative feature (such as Ga-
bor wavelet, LBP, etc.) instead of the original intensity will
be pursued.
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